A self-organizing clustering technique for vector quantization in speech recognition
نویسندگان
چکیده
For the sake of data reduction in automatic speech recognition often vector quantization based on a previously generated code book is performed. ln the approach described here the necessary code book is set up by means of a selforganizing dustering technique. lt takes the shape of a two-dimensional array of feature vectors. Phonetically similar vectors are also arranged in geometrical vicinity. The definition of a new distance measure suitable for this so-called phonotopic map is introduced. The procedure has been implemented for an isolated-word recognition system for I arge vocabularies (1 ,000 words). From a small number of phonetically balanced training utterances (17 words) a map of size 10x10 is built. A recognition rate of more than 98 per cent is achieved with single training of the lexicon when the phonotopic map is used as code book in combination with the proposed distance measure.
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملInfluence of Vector Quantization on Isolated Word Recognition
Vector Quantization can be considered as a data compression technique. In the last few years, vector quantization has been increasingly applied to reduce problem complexity like pattern recognition. In speech recognition, discrete systems are developed to build up real-time systems. This paper presents original results by comparing the KMeans and the Kohonen approaches on the same recognition p...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملArchitecture Optimization Model for the Probabilistic Self-organizing Maps
The PRobabilistic Self-Organizing Maps (PRSOM) become more and more interesting in many fields such as: pattern recognition, clustering, classification, speech recognition, data compression, medical diagnosis, etc. The PRSOM give an estimation of the density probability function of the data, which depends on the parameters of the PRSOM, such as the architecture of the network. When we take a ra...
متن کاملComparison of clustering methods: A case study of text-independent speaker modeling
Clustering is needed in various applications such as biometric person authentication, speech coding and recognition, image compression and information retrieval. Hundreds of clustering methods have been proposed for the task in various fields but, surprisingly, there are few extensive studies actually comparing them. An important question is how much the choice of a clustering method matters fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1987